Embedding $U_q(sl(2))$ and Sine Algebras in Generalized Clifford Algebras

E. H. EL Kinani^{1,2} and A. Ouarab³

Received February 4, 2000

We establish the connection between certain quantum algebras and generalized Clifford algebras (GCA). To be precise, we embed the quantum tori Lie algebra and $U_q(sl(2))$ in GCA.

1. INTRODUCTION

Here we establish a connection between certain algebraic structures and generalized Clifford algebras GCA [1–3]. We show that the quantum tori Lie algebra (QTLA), alias sine trigonometric or Fairlie-Fletcher-Zachos (FFZ) algebra [4, 5], can be constructed from GCA. Relying on the fact that $U_q(sl(2))$ can be constructed from QTLA [6, 7], we give the embedding of the quantum universal enveloping algebra $U_q(sl(2))$ in GCA.

To begin, we recall that the classical Clifford algebras have in common their definition from a quadratic or bilinear relation and consequently admit a \mathbb{Z}_2 -graded structure. However, mathematicians have obtained, in the spirit of the usual Clifford algebras, new algebras defined from an *n*-linear relation and leading to an underlying \mathbb{Z}_n -graded structure, the so-called generalized Clifford algebras, which emerge naturally in various contexts [8–10]. The latter endow a differential structure on noncommutative variables which allows us to build a theory beyond supersymmetry [11, 12].

This paper is organized as follows: In Section 2 we sketch briefly the basic and useful properties of GCA. Then we construct the quantum tori Lie

1963

0020-7748/00/0800-1963\$18.00/0 © 2000 Plenum Publishing Corporation

¹UFR de Physique Théorique, Faculté des Sciences, BP 1014 Rabat, Morocco.

²Permanent address: Département de Mathématique, Faculté des Sciences et Technique, Boutalamine, BP 509, Errachidia, Morocco.

³Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

algebra in Section 3. In Section 4 we give the embedding of the quantum universal enveloping algebra $U_q(sl(2))$ in GCA.

2. REVIEW OF THE GCA

In this section, we recall briefly the basic notions connected with GCA (for more details see, e.g., refs. 2 and 3). The generalized Clifford algebra \mathbf{C}_n^r is generated by a set of *r* canonical generators $\Gamma_1, \Gamma_2, \ldots, \Gamma_i$ fulfilling

$$\Gamma_i \Gamma_j = \omega \Gamma_j \Gamma_i, \qquad i < j$$

$$\Gamma_i^n = 1, \qquad i = 1, 2, \dots, r$$
(1)

where $\omega = \exp(2\pi i/n)$ is an *n*th primitive root of unity.

If we substitute the equation in the second line (i.e, $\Gamma_i^n = 1$) by $\Gamma_i^n = 0$, the obtained algebra becomes the generalized Grassmann algebra $\mathbf{G}(r, n)$. The latter is the fundamental tool in fractional statistics, fractional supersymmetry [11], and even 2D fractional conformal theory [12].

3. QUANTUM TORI LIE ALGEBRA AND ITS GCA REALIZATION

The quantum tori Lie algebra, also called trigonometric sine algebra or FFZ algebra, is generated by the elements J_m , where $m \equiv (m_1, m_2)$ is any vector belonging to the square integer lattice $Z^2 - \{0, 0\}$, with the commutation relations

$$[J_{(m_1,m_2)}, J_{(m_1',m_2')}] = -2i \sin\left(\frac{2\pi}{k} (m_1 m_2' - m_1' m_2)\right) J_{(m_1+m_1',m_2'+m_2')}$$
(2)

This is exactly the Moyal bracket quantization of the area-preserving diffeomorphism or symplectomorphism algebra on the 2D torus [13]:

$$L_{(m_1,m_2)} = -i\epsilon^{\alpha\beta}m_{\alpha} \exp i(m_1\sigma_1 + m_2\sigma_2)\partial_{\beta}$$
(3)

where $\partial_i = \partial/\partial \sigma_i$ and $\epsilon^{11} = \epsilon^{22} = 0$, $\epsilon^{12} = -\epsilon^{21} = 1$.

It should be mentioned that the deformation here is the Moyal quantization, which is strongly different from the Drinfel'd and Jimbo one where the Hopf structure plays a crucial role.

Another approach to the definition of QTLA is based on the idea of noncommutative geometry [13, 14].

Now we construct the QTLA from the GCA. We have the following assertion:

Theorem 1. The generators $T_{(m_1,m_2)}^{(i,j)}$, i < j, $(m_1, m_2) \neq (n, n)$, defined by

Embedding $U_q(sl(2))$ and Sine Algebras in GCAs

$$T_{(m_1,m_2)}^{(i,j)} = w^{(m_1,m_2/2)} \Gamma_i^{m_1} \Gamma_j^{m_2}$$
(4)

satisfying relation (2), determine the quantum tori Lie algebra through the identification $T_{(m_1,m_2)}^{(i,j)} \sim J_{(m_1,m_2)}$, and where we have used n = k.

The proof follows from the relation $\Gamma_i^m \Gamma_j^{m'} = w^{mm'} \Gamma_j^{m'} \Gamma_i^m$ after carrying out some algebraic manipulations.

4. THE EMBEDDING OF $U_q(sl(2))$ IN GCA

In this section we give the GCA realization of $U_q(sl(2))$; the latter emerges in several contexts, e.g., sine-Gordon theory [15] and Chern–Simons theory [6], which is connected with the quantum Hall system. The quantum universal enveloping algebra $U_q(sl(2))$ is defined as a complex unital associative algebra consisting of polynomials in X^{\pm} and convergent power series in h so that $(q \neq 0, 1)$

$$[h, X^{\pm}] = \pm X^{\pm}$$
 and $[X^{+}, X^{-}] = \frac{q^{2h} - q^{-2h}}{q - q^{-1}}$ (5)

The symbols $q^{\pm 2h}$ are usually considered as generators; including *h* in $U_q(sl(2))$ allows the limit $q \rightarrow 1$, which reduces Eq. (5) to the defining relation of the Lie algebra sl(2). In what follows, we embed $U_q(sl(2))$ in GCA; we have the following theorem:

Theorem 2. The generators X^{\pm} and $q^{\pm 2h}$ defined by

$$X^{+} = \frac{T_{(1,1)}^{(i,j)} - T_{(-1,1)}^{(i,j)}}{(q - q^{-1})}$$

$$X^{-} = \frac{T_{(-1,-1)}^{(i,j)} - T_{(1,-1)}^{(i,j)}}{(q - q^{-1})}$$

$$q^{+2h} = T_{(-2,0)}^{(i,j)}$$

$$q^{-2h} = T_{(2,0)}^{(i,j)}$$
(6)

where the deformation parameter is taken to be w = q, satisfy the commutation relation (2) determining the algebra $U_a(sl(2))$.

This embedding can be extended to additional cases. The following construction depends on the pair $m, m' \in Z^2$ and four complex parameters a, b, c, and d:

Theorem 3. The following generators satisfy the $U_q(sl(2))$ algebra

1965

EL Kinani and Ouarab

$$X^{+} = \frac{aT_{(m_{1},m_{2})}^{(i,j)} + bT_{(m_{1},m_{2})}^{(i,j)}}{(q - q^{-1})}$$

$$X^{-} = \frac{cT_{(-m_{1},-m_{2})}^{(i,j)} + aT_{(-m_{1},-m_{2})}^{(i,j)}}{(q - q^{-1})}$$

$$q^{+2h} = T_{(m_{1}-m_{1},m_{2}-m_{2})}^{(i,j)}$$

$$q^{-2h} = T_{(m_{1}-m_{1},m_{2}-m_{2})}^{(i,j)}$$
(7)

where here the deformation parameter $q = w^{(m \times m')/2}$ and $(m \times m') = m_1 m'_2 - m_2 m'_1$.

Calculating the commutation relation for X^{\pm} and $q^{\pm 2h}$ and using Eg. (1) to get the commutation relation for $U_a(sl(2))$ gives the choice ad = bc = 1.

5. CONCLUSION

We have established the connection between certain quantum algebras and the generalized Clifford algebras. In particular, we have embedded the quantum tori Lie algebra in GCA; based on this, we have proposed the embedding of $U_a(sl(2))$ in GCA.

REFERENCES

- 1. A. O. Morris, (1967). Q. J. Math. (Oxford) 18, 7-12; (1968) 19, 289.
- N. Fleury and M. Rausch de Traubenberg, (1992). J. Math. Phys. 33, 3356; (1994). Adv. Appl. Cliff. Alg. 4 123, and references therein.
- N. Fleury, M. Rausch de Traubenberg, and R. M. Yamaleev, (1993). Int. J. Theor. Phys. 32, 503.
- D. B. Fairlie, P. Fletcher, and C. K. Zachos, (1989). (1990). Phys. Lett. B 218, 203; J. Math. Phys. 31, 1088.
- M. I. Golenisheva-Kutuzova, D. R. Lebedev, and M. A. Olshanetsky, (1994). *Theor. Math. Phys.* 100, 863; (1992). *Comm. Math. Phys.* 148, 403.
- 6. I.I. Kogan, (1994). Int. J. Mod. Phys. A 9, 3887.
- 7. E. H. EL Kinani, (1996). Phys. Lett. B 383, 403.
- 8. H. Weyl, (1932). *The Theory of Groups and Quantum Mechanics*, Dutton, pp. 272–280 (Reprinted, Dover, New York, 1950).
- 9. T. S. Santhanam, (1977). Found. Phys. 7, 121; (1982). Physica A 114, 4.
- 10. R. Jannathan and T. S. Santhanam, (1982). (1982). Theor. Phys. 21, 363.
- S. Durand, (1993). Mod. Phys. Lett A 8, 2323; (1993). 8, 1195; (1992). 7, 2904; (1993). Phys. Lett. B 312, 115.
- 12. A. Perez, M. Rausch de Traubenberg, and P. Simon, (1996). Nucl. Phys. B 482, 325.
- 13. E. H. EL Kinani, (1997). Mod. Phys. Lett. A 12, 1589.
- 14. A. Connes, (1994). Noncommutative Geometry, Academic Press, London.
- 15. D. Bernard and LeClaire, (1991). Comm. Math. 142, 99.

1966