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Embedding Uq(sl(2)) and Sine Algebras in
Generalized Clifford Algebras
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We establish the connection between certain quantum algebras and generalized
Clifford algebras (GCA). To be precise, we embed the quantum tori Lie algebra
and Uq(sl(2)) in GCA.

1. INTRODUCTION

Here we establish a connection between certain algebraic structures and
generalized Clifford algebras GCA [1–3]. We show that the quantum tori
Lie algebra (QTLA), alias sine trigonometric or Fairlie-Fletcher-Zachos (FFZ)
algebra [4, 5], can be constructed from GCA. Relying on the fact that Uq(sl(2))
can be constructed from QTLA [6, 7], we give the embedding of the quantum
universal enveloping algebra Uq(sl(2)) in GCA.

To begin, we recall that the classical Clifford algebras have in common
their definition from a quadratic or bilinear relation and consequently admit
a Z2-graded structure. However, mathematicians have obtained, in the spirit
of the usual Clifford algebras, new algebras defined from an n-linear relation
and leading to an underlying Zn-graded structure, the so-called generalized
Clifford algebras, which emerge naturally in various contexts [8–10]. The
latter endow a differential structure on noncommutative variables which
allows us to build a theory beyond supersymmetry [11, 12].

This paper is organized as follows: In Section 2 we sketch briefly the
basic and useful properties of GCA. Then we construct the quantum tori Lie
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algebra in Section 3. In Section 4 we give the embedding of the quantum
universal enveloping algebra Uq(sl(2)) in GCA.

2. REVIEW OF THE GCA

In this section, we recall briefly the basic notions connected with GCA
(for more details see, e.g., refs. 2 and 3). The generalized Clifford algebra
Cr

n is generated by a set of r canonical generators G1, G2, . . . , Gi fulfilling

GiGj 5 vGjGi , i , j
(1)

Gn
i 5 1, i 5 1, 2, . . . , r

where v 5 exp(2pi/n) is an nth primitive root of unity.
If we substitute the equation in the second line (i.e, Gn

i 5 1) by
Gn

i 5 0, the obtained algebra becomes the generalized Grassmann algebra
G(r, n). The latter is the fundamental tool in fractional statistics, fractional
supersymmetry [11], and even 2D fractional conformal theory [12].

3. QUANTUM TORI LIE ALGEBRA AND ITS GCA
REALIZATION

The quantum tori Lie algebra, also called trigonometric sine algebra or
FFZ algebra, is generated by the elements Jm , where m [ (m1, m2) is any
vector belonging to the square integer lattice Z 22{0, 0}, with the commuta-
tion relations

[J(m1,m2), J(m81,m82)] 5 2 2i sin12p
k

(m1m82 2 m81m2)2J(m11m81,m821m82) (2)

This is exactly the Moyal bracket quantization of the area-preserving diffeom-
orphism or symplectomorphism algebra on the 2D torus [13]:

L(m1,m2) 5 2ieabma exp i(m1s1 1 m2s2)b (3)

where i 5 /si and e11 5 e22 5 0, e12 5 2e21 5 1.
It should be mentioned that the deformation here is the Moyal quantiza-

tion, which is strongly different from the Drinfel’d and Jimbo one where the
Hopf structure plays a crucial role.

Another approach to the definition of QTLA is based on the idea of
noncommutative geometry [13, 14].

Now we construct the QTLA from the GCA. We have the following
assertion:

Theorem 1. The generators T (i, j)
(m1,m2), i , j, (m1, m2) Þ (n, n), defined by
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T (i, j)
(m1,m2) 5 w(m1,m2/2)Gm1

i Gm2
j (4)

satisfying relation (2), determine the quantum tori Lie algebra through the
identification T (i, j)

(m1,m2) , J(m1,m2), and where we have used n 5 k.

The proof follows from the relation Gm
i Gm8

j 5 wmm8Gm8
j Gm

i after carrying
out some algebraic manipulations.

4. THE EMBEDDING OF Uq(sl(2)) IN GCA

In this section we give the GCA realization of Uq(sl(2)); the latter
emerges in several contexts, e.g., sine-Gordon theory [15] and Chern–Simons
theory [6], which is connected with the quantum Hall system. The quantum
universal enveloping algebra Uq(sl(2)) is defined as a complex unital associa-
tive algebra consisting of polynomials in X6 and convergent power series in
h so that (q Þ 0, 1)

[h, X6] 5 6X6 and [X +, X 2] 5
q2h 2 q22h

q 2 q21 (5)

The symbols q62h are usually considered as generators; including h in
Uq(sl(2)) allows the limit q → 1, which reduces Eq. (5) to the defining
relation of the Lie algebra sl(2). In what follows, we embed Uq(sl(2)) in
GCA; we have the following theorem:

Theorem 2. The generators X6 and q62h defined by

X + 5
T (i, j)

(1,1) 2 T (i, j)
(21,1)

(q 2 q21)

X 2 5
T (i, j)

(21,21) 2 T (i
,
j)

(1,21)

(q 2 q21)
(6)

q12h 5 T (i, j)
(22,0)

q22h 5 T (i, j)
(2,0)

where the deformation parameter is taken to be w 5 q, satisfy the commutation
relation (2) determining the algebra Uq(sl(2)).

This embedding can be extended to additional cases. The following
construction depends on the pair m, m8 P Z 2 and four complex parameters
a, b, c, and d:

Theorem 3. The following generators satisfy the Uq(sl(2)) algebra
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X + 5
aT (i, j)

(m1,m2) 1 bT (i, j)
(m81,m82)

(q 2 q21)

X 2 5
cT (i, j)

(2m1,2m2) 1 aT (i, j)
(2m81,2m82)

(q 2 q21)
(7)

q12h 5 T (i, j)
(m12m81,m22m82)

q22h 5 T (i, j)
(m812m1,m822m2)

where here the deformation parameter q 5 w(m3m8)/2 and (m 3 m8) 5
m1m82 2 m2m81.

Calculating the commutation relation for X6 and q62h and using Eg. (1)
to get the commutation relation for Uq(sl(2)) gives the choice ad 5 bc 5 1.

5. CONCLUSION

We have established the connection between certain quantum algebras
and the generalized Clifford algebras. In particular, we have embedded the
quantum tori Lie algebra in GCA; based on this, we have proposed the
embedding of Uq(sl(2)) in GCA.
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